How Do You Find The Third Degree Taylor Polynomial For F X Ln X Centered At A 2

##ln(2)+1/2(x-2)-1/8(x-2)^2+1/24(x-2)^3##.

The general form of a Taylor expansion centered at ##a## of an analytical function ##f## is ##f(x)=sum_{n=0}^oof^((n))(a)/(n!)(x-a)^n##. Here ##f^((n))## is the nth derivative of ##f##.

The third degree Taylor polynomial is a polynomial consisting of the first four (##n## ranging from ##0## to ##3##) terms of the full Taylor expansion.

Therefore this polynomial is ##f(a)+f'(a)(x-a)+(f”(a))/2(x-a)^2+(f”'(a))/6(x-a)^3##.

##f(x)=ln(x)##, therefore ##f'(x)=1/x##, ##f”(x)=-1/x^2##, ##f”'(x)=2/x^3##. So the third degree Taylor polynomial is:##ln(a)+1/a(x-a)-1/(2a^2)(x-a)^2+1/(3a^3)(x-a)^3##.

Now we have ##a=2##, so we have the polynomial:##ln(2)+1/2(x-2)-1/8(x-2)^2+1/24(x-2)^3##.

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
ORDER NOW