Vertical: x=3; no Horizontal asymptote; Oblique: y=x+5
1) The vertical depend on the ; the domain is obtained by solving the following:
##x^2-5x+6!=0##
that is solved by :
##x=(-b+-sqrt(b^2-4ac))/2a##
where a=1; b=-5; c=6
then
##x=(5+-sqrt(5^2-4*1*6))/(2*1)##
##=(5+-sqrt(25-24))/2##
##=(5+-1)/2##
##x_1=2;x_2=3##
The domain of the given function is:
##x!=2 and x!=3##
Now let’s calculate
##lim_(x->2) (x^3-8)/(x^2-5x+6)=lim_(x->2)((cancel(x-2))(x^2+2x+4))/((cancel(x-2))(x-3))=-12##
and
##lim_(x->3) (x^3-8)/(x^2-5x+6) =lim_(x->3)((cancel(x-2))(x^2+2x+4))/((cancel(x-2))(x-3))=oo##
Then the vertical asymptote is the line x=3
2) Let’s calculate
##lim_(x->oo) (x^3-8)/(x^2-5x+6)=oo##
then there are no horizontal asymptote
3) Let’s calculate
##m=lim_(x->oo) (x^3-8)/(x^2-5x+6)*1/x=(x^3-8)/(x^3-5x^2+6x)=1##
that’s the slope of the oblique asymptote.
Let’s calculate the intercept
##n=lim_(x->oo) (x^3-8)/(x^2-5x+6)-mx=lim_(x->oo) (x^3-8)/(x^2-5x+6)-x##
##n=lim_(x->oo) (cancelx^3-8-cancelx^3+5x^2-6x)/(x^2-5x+6)=5##
Then the oblique asymptote is the line
##y=x+5##
graph{(x^3-8)/(x^2-5x+6) [-20, 10, -15, 5]}
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Slant Asymptote Of F X X 2 3x 3 X 4
/in Uncategorized /by developerSlant asymptote: ##y = x-1##. See the -inclusive graph.
By division,
##y = f(x)= x-1+1/(x+4)##
Rearranged,
##(y-x+1)(x+4)=1##, revealing that the graph is a hyperbola with
asymptotes
##(y-x+1)(x+4)=0##.
Separately,
y-x+1=0 gives a slant asymptote and
x+4=0 gives a vertical asymptote.
graph{((y-x+1)(x+4)-1)(y-x+1)(x+0.000001y+4)=0 [-23, 23.02, -12.7, 12.6]}
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Slant Asymptote Of Y Sqrt X 2 4x
/in Uncategorized /by developerNotice that ##x^2+4x = (x+2)^2 – 4## and take ##abs(x+2)## outside the square root to find two slant :
##y = x+2##
and
##y = -x-2##
Let ##f(x) = y = sqrt(x^2+4x) = sqrt(x(x+4))##
As a Real valued function, this has ##(-oo, -4] uu [0, oo)##, since ##x^2+4x >= 0## if and only if ##x in (-oo, -4] uu [0, oo).##
##sqrt(x^2+4x)##
##=sqrt(x^2+4x+4-4)##
##=sqrt((x+2)^2-4)##
##=sqrt((x+2)^2(1 – 4/((x+2)^2))##
##=abs(x+2) sqrt(1-4/(x+2)^2)##
As ##x->+-oo## we find that ##4/(x+2)^2 -> 0##, so ##f(x)## is asymptotic to ##abs(x+2)##
This results in two slant asymptotes:
##y = x+2## as ##x->+oo##
and
##y = -x-2## as ##x->-oo##
graph{(y-sqrt(x^2+4x))(y – x – 2)(y + x + 2) = 0 [-11.01, 8.99, -1.08, 8.92]}
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Third Degree Taylor Polynomial For F X Ln X Centered At A 2
/in Uncategorized /by developer##ln(2)+1/2(x-2)-1/8(x-2)^2+1/24(x-2)^3##.
The general form of a Taylor expansion centered at ##a## of an analytical function ##f## is ##f(x)=sum_{n=0}^oof^((n))(a)/(n!)(x-a)^n##. Here ##f^((n))## is the nth derivative of ##f##.
The third degree Taylor polynomial is a polynomial consisting of the first four (##n## ranging from ##0## to ##3##) terms of the full Taylor expansion.
Therefore this polynomial is ##f(a)+f'(a)(x-a)+(f”(a))/2(x-a)^2+(f”'(a))/6(x-a)^3##.
##f(x)=ln(x)##, therefore ##f'(x)=1/x##, ##f”(x)=-1/x^2##, ##f”'(x)=2/x^3##. So the third degree Taylor polynomial is:##ln(a)+1/a(x-a)-1/(2a^2)(x-a)^2+1/(3a^3)(x-a)^3##.
Now we have ##a=2##, so we have the polynomial:##ln(2)+1/2(x-2)-1/8(x-2)^2+1/24(x-2)^3##.
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Vertex Of The Parabola Y 2x 2 8x 7
/in Uncategorized /by developerA slight variant on method
##color(blue)(“Vertex” ->(x,y)->(2,-1)##
Given:##” “2x^2-8x+7##
Write as:##” ” 2(x^2-color(red)(8/2)x)+7##
Consider the ##color(red)(-8/2)” from “-8/2x##
##color(blue)(x_(“vertex”)=(-1/2)xx(color(red)(-8/2)) = +8/4 = 2)##
‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute ##x=color(magenta)(2)## in the original equation to find ##y_(“vertex”)##
##y=2x^2-8x+7″ “->” “y_(“vertex”)=2(color(magenta)(2))^2-8(color(magenta)(2))+7##
##color(blue)(y_(“vertex”)= 8-16+7=-1)##
‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##color(blue)(“Vertex” ->(x,y)->(2,-1)##
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Vertical Asymptotes Of The Function Y X 2 1 3x 2x 2
/in Uncategorized /by developerThe vertical asymptotes of ##y=(x^2+1)/(3x-2x^2)## are##x=0## and ##x=3/2##.
To find the vertical asymptotes we set the denominator equal to zero.
##3x-2x^2=x(3-2x)=0rArrx=0 or x=3/2##
Look at the graph below.
Sometimes, the denominator is equal to zero at the same x-value that makes the numerator zero. This will produce a instead of a vertical asymptote.
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Vertical Horizontal And Oblique Asymptote Given H X X 3 8 X
/in Uncategorized /by developerVertical: x=3; no Horizontal asymptote; Oblique: y=x+5
1) The vertical depend on the ; the domain is obtained by solving the following:
##x^2-5x+6!=0##
that is solved by :
##x=(-b+-sqrt(b^2-4ac))/2a##
where a=1; b=-5; c=6
then
##x=(5+-sqrt(5^2-4*1*6))/(2*1)##
##=(5+-sqrt(25-24))/2##
##=(5+-1)/2##
##x_1=2;x_2=3##
The domain of the given function is:
##x!=2 and x!=3##
Now let’s calculate
##lim_(x->2) (x^3-8)/(x^2-5x+6)=lim_(x->2)((cancel(x-2))(x^2+2x+4))/((cancel(x-2))(x-3))=-12##
and
##lim_(x->3) (x^3-8)/(x^2-5x+6) =lim_(x->3)((cancel(x-2))(x^2+2x+4))/((cancel(x-2))(x-3))=oo##
Then the vertical asymptote is the line x=3
2) Let’s calculate
##lim_(x->oo) (x^3-8)/(x^2-5x+6)=oo##
then there are no horizontal asymptote
3) Let’s calculate
##m=lim_(x->oo) (x^3-8)/(x^2-5x+6)*1/x=(x^3-8)/(x^3-5x^2+6x)=1##
that’s the slope of the oblique asymptote.
Let’s calculate the intercept
##n=lim_(x->oo) (x^3-8)/(x^2-5x+6)-mx=lim_(x->oo) (x^3-8)/(x^2-5x+6)-x##
##n=lim_(x->oo) (cancelx^3-8-cancelx^3+5x^2-6x)/(x^2-5x+6)=5##
Then the oblique asymptote is the line
##y=x+5##
graph{(x^3-8)/(x^2-5x+6) [-20, 10, -15, 5]}
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find The Zeros Of The Function F X X 2 2x 4
/in Uncategorized /by developerThe zeros of this function are ##x_1=1-sqrt(5)## and ##x_2=1+sqrt(5)##
To find the zeros of a quadratic function you first have to calculate ##Delta##. In this case it is ##Delta = (-2)^2-4*1*(-4) = 20####Delta > 0 ## so function has 2 real zeros which can be calculated using:
##x_1=(-b-sqrt(Delta))/(2a)## and ##x_2 = (-b+sqrt(Delta))/(2a)##
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Find Vertical Horizontal And Oblique Asymptotes For 2x 2 6x 3 3x 9
/in Uncategorized /by developerVertical asymptote: ##x=-3##Horizontal asymptote: noneOblique asymptote: ##y=-2x##
How to find vertical asymptote:
Set denominator to equal zero and solve for ##x##
##3x+9## ##rarr## ##3x=-9## ##rarr## ##x=-9/3## ##rarr## ##x=-3##
How to find horizontal asymptote:
The degree in the numerator is greater than the degree of the denominator, therefore there is no horizontal asymptote.
How to find oblique asymptote:
The degree in the numerator is one more than the degree in the denominator, therefore there is a slant/oblique asymptote present. To find the slant asymptote, you must make sure that the numerator is in quadratic form. In this case, since the numerator is already in quadratic form, we leave it as it is. From here, we then perform synthesis division to find the slant asymptote.
We don’t have to worry about the remainder column in this situation. This makes the slant asymptote: ##y=-2x##We also know that there is a slant asymptote because there is also a vertical asymptote present.
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Formulate A Press Release To Make This Businesses Decision Public And
/in Uncategorized /by developerHow do you formulate a press release to make this businesses decision public and mitigate potential adverse reactions.? Your company has teamed up with a biotech company to investigate the possibility of cloning human organs. What is one public response to your companies news that you would anticipate?
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"
How Do You Get The Blue Tint Off Of The Answer You Submitted To Me This Morning
/in Uncategorized /by developerhow do you get the blue tint off of the answer you submitted to me this morning?
1 SOCIOLOGY GENDER ROLES WITHIN THE CAMBODIAN CULTURESTUDENT NAMELECTURER NAMECOURSE NAMESUBMISSION DATE 2 SOCIOLOGY GENDER ROLES WITHIN THE CAMBODIAN CULTUREMen and women have equal rights…
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"